
Delivering Software Innovation

MPC Data Limited is a company registered in England and Wales with company number 05507446.
Copyright © MPC Data Limited 2010. All trademarks are hereby acknowledged

The Right Approach to Minimal
Boot Times

Andrew Murray

Senior Software Engineer

CELF Embedded Linux Conference Europe 2010

Delivering Software Innovation

22

 Senior Software Engineer,

MPC Data

 Driver and kernel development

 Embedded applications development

 Windows driver development

 Work Experience

 4 years of experience working with embedded Linux devices

 Good track record in dramatically reducing customers‟ boot time

through MPC Data‟s boot time reduction service:

– Tight timescales often doesn‟t permit nice, elegant and generic

solutions – however this frustration had provided me with many

ideas I wish to share today

– I also wish to share my observations and experiences in boot

time reduction

Andrew Murray

Delivering Software Innovation

33

Agenda

 Principals behind boot time reduction

 My approach to boot time reduction

 Case Study: MS7724 „Ecovec‟

 Optimizing user space and function reordering

 Video Demonstration

 Conclusion and Q&A

Delivering Software Innovation

4

Principals

 The problem:

 Getting an embedded Linux based product from power-on to a
useful state of functionality in an acceptable amount of time.

 Many innovative solutions exist: Suspend / Hibernate / etc

 This presentation focuses on cold-boot optimisation

 Specialising software for specific needs of a product

 And this works because prior to optimisation the software will be:

– More General purpose

– Likely to contain functionality your device doesn‟t require
which will result in more initialisation and a larger image

– More Convenient and flexible

– Likely to probe and detect hardware which you know will
always be there which will contribute to boot delay.

 There is no silver bullet here – all that is required is:

Disciplined Analysis + Common Sense + Pragmatic Approach

4

Delivering Software Innovation

5

The Approach

5

Identify boot
time

functionality

Measure
boot time
across the

board

Remove un-
necessary

functionality

Optimise
required

functionality

Re-order
initialisation

Delivering Software Innovation

6

The Approach

6

Identify boot
time

functionality

Measure
boot time
across the

board

Remove un-
necessary

functionality

Optimise
required

functionality

Re-order
initialisation

 Understand what functionality is required:

 Immediately after boot

 Sometime after

 The better your understanding the more able you are to
specialise Linux and thus improve boot time

Delivering Software Innovation

7

The Approach

7

Identify boot
time

functionality

Measure
boot time
across the

board

Remove un-
necessary

functionality

Optimise
required

functionality

Re-order
initialisation

 It is important to visualise what contributes to boot time

 Measuring boot time across the entire software stack is
essential

 Without tools, gauging small boot delays can be impossible

 Being able to accurately measure boot time across the board
will allow you to measure the effect of any changes you
make…

 …otherwise you‟ll be lost in the dark

Delivering Software Innovation

8

The Approach

8

Identify boot
time

functionality

Measure
boot time
across the

board

Remove un-
necessary

functionality

Optimise
required

functionality

Re-order
initialisation

 Unnecessary functionality will increase boot time due to

 Increased image size (flash transfer time)

 Time spent initialization during start up

 “But I might use this feature in the future, it‟s nice to have”
– Be strict and stick to the brief

Delivering Software Innovation

9

The Approach

9

Identify boot
time

functionality

Measure
boot time
across the

board

Remove un-
necessary

functionality

Optimise
required

functionality

Re-order
initialisation

 Functionality you require can be optimised

 It may already be optimised in a later version of sources

 This may involve:

 Optimising flash timings

 Removing unnecessary probing / delays

 Refactoring code

 Taking a new approach to problems

Delivering Software Innovation

10

The Approach

10

Identify boot
time

functionality

Measure
boot time
across the

board

Remove un-
necessary

functionality

Optimise
required

functionality

Re-order
initialisation

 Further improvements can be gained by doing things at
different times:

 Parallelisation

 Using Arjan‟s async framework (kernel/async.c)

 Deferred loading of less important features

 Loadable kernel modules

Delivering Software Innovation

11

Case Study

 Use the MS7724 „EcoVec‟ as a case study for a home
automation system

 Boot time functionality:

 Responsive QT user interface

 Additional functionality:

 Video capture/render (representing a security camera)

 Will describe tools, techniques and lessons along the way

11

Delivering Software Innovation

12

MS7724

12

Delivering Software Innovation

13

SH7724

13

Delivering Software Innovation

14

Case Study

 Use the MS7724 „EcoVec‟ as a case study for a home
automation system

 Boot time functionality:

 Responsive QT user interface

 Additional functionality:

 Video capture/render (representing a security camera)

 Will describe tools, techniques and lessons along the way

14

Delivering Software Innovation

15

Case Study

15

Delivering Software Innovation

16

Case Study

 Use the MS7724 „EcoVec‟ as a case study for a home
automation system

 Boot time functionality:

 Responsive QT user interface

 Additional functionality:

 Video capture/render (representing a security camera)

 Will describe tools and techniques along the way

16

Delivering Software Innovation

17

Case Study

 Typical Starting Point:

 BootLoader: UBoot (2009-01)

 OS: Linux (2.6.31-rc7)

 Filesystem: Buildroot (2010.05), JFFS2, NOR Flash

 Application: QT Embedded Opensource 4.6.2

17

Delivering Software Innovation

18

MS7724 Boot Process

 Component times mostly measured using GPIO and a logic
analyser,

 UBoot time measured between reset and GPIO line being
asserted

 Sources modified to toggle GPIO at key points:

– UBoot: UBoot to kernel handover
(common/cmd_bootm.c:do_bootm)

– Kernel: Mount FS
(init/do_mounts.c:do_mount_root)

– Kernel: Init
(init/main.c:init_post)

 Used printk timings for the rest

 Time to required boot time functionality: > 19 seconds!

18

Baseline
(seconds)

UBoot
(2.58 s)

Kernel
(1.30 s)

Filesystem
Mount

(~6.83 s)

Init Scripts
(1.30 s)

GUI
Application

(7.43 s)

Power-to-UI: 19.44 seconds

Delivering Software Innovation

19

UBoot

Functionality Removal

• User Boot Delay – 1000 ms

• Image Verification – 374 ms

• Image Decompression

• USB, ROMImage, Filesystems – 195 ms

Functionality Optimisation

• Improve „memcpy‟ code – 342 ms

• Eliminate use of console – 103 ms

• Reduced kernel size – 60ms

Functionality Re-ordering

• Read MAC from EEPROM – 124 ms

• Ethernet setup – 98 ms

Reduction: 2577 ms > 280 ms (89%)Init

0.580

User Boot

Delay

1.000

Verify

Image

0.374

Extract

Image

0.622

0

0.5

1

1.5

2

2.5

3

T
im

e
 (

s
)

Boot Task

Delivering Software Innovation

20

UBoot (Before and After)

Init

0.580

User Boot

Delay

1.000

Verify

Image

0.374

Extract

Image

0.622

0

0.5

1

1.5

2

2.5

3

T
im

e
 (

s
)

Boot Task

Before (136 kB) After (94 kB)

Initialisation

Decompress

0

0.5

1

1.5

2

2.5

3

T
im

e
 (

s
)

Boot Task

Delivering Software Innovation

21

Compressed Kernel Images

 The purpose of the boot loader is to jump to an
uncompressed kernel image in RAM

 A number of factors should be considered

 If Flash throughput is greater than decompression
throughput then an uncompressed image is quicker

21

Flash
Throughput

(10.50 MB/s)

Decompression
Throughput

(2.67 MB/s)

Delivering Software Innovation

22

Linux Kernel

Functionality Removal

• Remove USB – 88 kB – 144 ms

• Remove keyboard driver – 4 ms

• Remove Filesystems – 300 kB – 0.8 ms

• Remove console output

Functionality Optimisation

• Remove delays in driver initialization – 400 ms

• Removing delays - 252 ms

• Prevent probing disconnected cameras – 200 ms

• Limiting memset size – 90 ms

• Improve performance of memset – 71 ms

Functionality Re-ordering

• Defer networking initialization – 166 kB – 20 ms

Reduction: 1301 ms -> 113 ms (91%)

Delivering Software Innovation

23

Linux Kernel (Before and After)

Delivering Software Innovation

24

Userspace (Mount and Init scripts)

Functionality Removal

•Remove all init scripts – use a single init
process – 1.32 s

Functionality Optimisation

•Statically link application with uClibc libraries

•Use SquashFS instead of JFFS2 ~6.81 s

• Improve performance of NOR memory driver

Functionality Re-ordering

•Start QT then later start video

Reduction: 8130 ms > 64 ms (99%)
Example of a bootchart graphic

Delivering Software Innovation

25

QT

 Reducing the boot time of the QT application was the biggest
challenge and very time consuming

 Un-optimized QT application was large and took 7.4 seconds
to reach it‟s main function!

 Improvements reduce time to 0.3 seconds:

Measurements show incremental effects against original binary (from left to right)

Optimise flash
access

(arch/sh/kernel/io.c)

-2.89s

Removed features
-2.16s?

Used statically
linked uClibc

-0.9s?

Stripped
-0.16s

Optimising
executable

-0.35s

Read-ahead and
block size
- 0.63s

Delivering Software Innovation

26

Why does QT take so long to start?

 Only a portion of the QT application is required to display a
UI to the user

 Event handling, additional forms, etc come later

 As Linux uses Demand Paging - when an executable is run
only parts of the executable used are read from flash

 This reduces unnecessary flash accesses and decreases
application start up time

 However the application is on a block filesystem so when an
entire block is retrieved at a time…

 …This results in unnecessary flash access time if the required
executable code is spread over the entire image

Delivering Software Innovation

27

Function Reordering and Block Sizes

 Sections highlighted in red represent parts of executable
required at start up

 Most of these parts could fit in a single file-system block

 I.e. we could optimise the application such that only 2 blocks of
flash are accessed rather than 4

 Thus the executable can be optimised by:

 Reducing block size

 Eliminating FS readahead

 Reordering executable

MTD
Layer

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

NOR
Flash

NOR Flash

FS QT Application

Delivering Software Innovation

28

Function Reordering

 GCC compiler features can be used to assist:

 --finstrument-functions

 --ffunction-sections

 Before the entry and after the exit of every function call –
GCC will call two new functions when –finstrument-functions
is used:

 void __cyg_profile_func_enter (….)

 void __cyg_profile_func_exit (….)

 These calls can be implemented to find out which functions
are called when

 This information can be used to generate a custom linker
script – when –function-sections is used each function lives
in its own section.

 This way we can ensure all the required sections for startup
are contained contiguously in flash

 (--gc-sections can also be helpful)

Delivering Software Innovation

29

Function Reordering and Block Sizes

 Before:

 After:

MTD
Layer

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

NOR
Flash

NOR Flash

FS QT Application

MTD
Layer

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

NOR
Flash

NOR Flash

FS QT Application

Delivering Software Innovation

30

Essential tools

 Discrete events can be measured by toggling GPIO outputs
and utilising a logic analyser,

 Kernel events can be measured with:

 Printk timings,

 Initcall_debug and bootchart scripts,

 Userspace events can be measured with ubootchart

 http://code.google.com/p/ubootchart/

 http://www.bootchart.org/

 These are just some of the many tools available

http://code.google.com/p/ubootchart/
http://www.bootchart.org/

Delivering Software Innovation

31

Case Study: Before and After

A reduction of 96%!

Baseline
(seconds)

UBoot
(2.58 s)

Kernel
(1.30 s)

Filesystem
Mount

(~6.83 s)

Init Scripts
(1.30 s)

GUI
Application

(7.43 s)

Power-to-UI: 19.44 seconds

After swiftBoot
Modifications

(seconds)

UBoot
(0.28 s)

Kernel
(0.11 s)

Filesystem
Mount

(0.02 s)

Init Scripts
(0.06 s)

GUI
Application

(0.30 s)

Power-to-UI: 0.77 seconds

Delivering Software Innovation

32

Modification
In UBoot

Gain
(ms)

Modification
In Kernel

Gain
(ms)

Modification
In Userspace

Gain
(ms)

Remove boot delay 1000 Remove driver
delays

652 Use squashfs 6830

Remove Image
verification

374 Prevent probing
disconnected
cameras

200 Optimise flash
accesses 2890

Optimise memcpy
code

342 Remove USB 144 Remove unused
features from QT

2160

Remove USB
ROMImage,
filesystems

195 Don‟t allocate
memory for unused
camera components

90
Remove all init scripts 1300

Defer reading MAC
address

124 Improve memset 71 Statically link QT with
uclibc

900

Reduction due to
kernel size

60 Defer network
initialisation

20 Reduce readahead
and block size

630

Remove delays in
Ethernet init

98 Remove keyboard
driver

4 Re-order QT
application

350

Eliminate use of
console

103 Remove filesystems 0.8 Strip QT application 160

Total Gain 2.2 s Total Gain 1.2 s Total Gain 15.2 s

Summary

Delivering Software Innovation

33

Guiding Principles

 Observe and Record

 Measuring boot times is the only way to form a clear picture of
what is contributing to boot time,

 Keep copious notes

 Tackle the biggest delays in the system first,

 Identify the largest delays and remove them to be most
effective

 Be aware and try to understand varying boot times

 Remember the uncertainty principle

 Don‟t forget testing

Delivering Software Innovation

34

Conclusion & Call to action

Reducing cold boot time is a like removing the

longest links of a chain until you have just

short links

 As a result boot time is a product of a system
design and long links can be easily added

 Effort will always be required to remove and
shorten links for a given system

 Holy grail is to reduce this amount of effort to
nothing – some ideas towards this:

 [Idealism] Asynchronous initialisation in the kernel by default

– Many challenges here

– This would reduce effect of delays in drivers

 [Realism] Simple Caching framework for device probes

– To eliminate probes for known hardware (generic device tree)

– Could encompass LPJ, etc

35

Thank You
Any Questions?

36

Appendix

Delivering Software Innovation

37

Initcall Debug

 Add the following to your kernel command line:

 initcall_debug (to add debug)

 loglevel=0 (to reduce the impact this has on boot time)

 Ensure the following are set in your kernel configuration:

 CONFIG_PRINTK_TIME (add timings to printks)

 CONFIG_KALLSYMS (ensure symbols are there)

 CONFIG_LOGBUF_SHIFT = 18 (ensure there is room in the log
buffer)

 Copy the output of „dmesg‟

 Type „cat output | ./scripts/bootgraph.pl > graph.svg‟

